
W-O- 954 DEM EING ONUSSIAN SLURt(U) NEN YOMK UNIV NY CORAT vi1

TR-U 114-95-K-M??
UONCLASSIFIED F/0O AM~mIR CECE UKLE 20/6 J N 

*EE~~A~E



=L 2-
.2.2

*1.8

.111125 11111 l 6

%.% , .O'o.o J " .. .'*. . .... ". ".... . . . . .- . "

?$ ~ ' 'Z 4-..%.~S 555 ,e , * * • . . * *.. <l... . *< " ". '. . • ." . .- "• , • . . . .- - - . -



Robotics ResearhITechnical Report
ch' 1"

"'""~'~". ~Deblurring Gaussian Blur

by

R. Hummelt
B. Kimia* .

S. W. Zuckert

~%
Technical Report No. 115
Robotics Report No. 23

Revised, June, 1986..; bh -

I

71 
-'A 

ZQ

1877



Accession Jor -i

I- - -- - _ _jNTIS GRAZE
D7IC TAB
tha-m o',nced

Dtrlbution/

Availability Codes
Avail and/or

Dist Special V'

Deblurring Gaussian Blur

by

R. HummeltB. Kimiat .,'

S. W. Zuckert 71"t

Technical Report No. 115
Robotics Report No. 23

Revised, June, 1986 ? '.

tNew York University ",'
Dept. of Computer Science

Courant Institute of Mathematical Sciences
251 Mercer Street .

New York, New York 10012

tComputer Vision and Robotics Lab ,.
Department of Electrical Engineering %

McGill University ',

Montreal, Quebec, Canada

.0% V
~. - .

This research was supported by NSERC grant A4470 and MRC grant MA6154 in
Canada and NSF grant DCR8403300 and ONR grant N0014-85-K-0077 in the United States.

," % *',-:g L',( ,'% ** ',2,' "_e_ €; ' " .. ".,,-, .- ,- - . , ,...,,,. . ... •-" .



Hummel, Kimla, and Zucker

DEBLURRING GAUSSIAN BLUR II
Robert A. Hummel

B. Kimia
Steven W. Zucker

Abstract p,:

Gaussian blur, or convolution against a Gaussian kernel, is a common model
for image and signal degradation. In general, the process of reversing
Gaussian blur is unstable, and cannot be represented as a convolution filter
in the spatial domain. If we restrict the space of allowable functions to poly-
nomials of fixed finite degree, then a convolution inverse does exist. We
give constructive formulas for the deblurring kernels in terms of Hermite
polynomials, and observe that their use yields optimal approximate deblur-
ring solutions among the space of bounded degree polynomials. The more
common methods of achieving stable approximate deblurring include restric-
tions to band-limited functions or functions of bounded norm.

. .. .. .); . I '. . I. , - / , ., .' ..

1. Introduction
Given an image or signal, the realization of any system for processing it must

introduce some amount of degradation. Since there may be several stages each con-
tributing to the degradation, the composition is often modeled as a Gaussian blur-
ring operation. We consider spatially invariant Gaussian convolution defined as fol- A-
lows. For a bounded measurable input function f(x) defined for xFIR', then the
observed blurred output is given by

h(x) = RK(x-,r)f(E)dC, ".

where
K(x,r) = ( e

(4~)l

and t is a fixed positive value parameterizing the extent of the blur. We wish to
estimate f(x) when only h(x) and the amount of blur t are known.

It would be especially nice to formulate deblurring as a convolution operation.
so that

f = D 0',t) * h.

In veneral, a univcrsal deblurring kernel D x,n does not exist Ho\'.cxr. if ,,::"-
cient restrictions are placed on the domain of permissihIe functions. f. then deblur-
ring kernels can exist.

Our interest in dchlurring is moti\ t.1 ? L' h " t'.%t concerns. First. deblurring is ,.
'nificant practical imnportan c in Im'l Ha/'c pr 'c1in 5\5 tcl ,, ,r Cxa l, ;L : , %

%**%
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DEBLURRING GAUSSIAN BLUR

computerized tomography [1]. There are also applications in physiological optics,
such as the de-focusing that automatically takes place for objects outside the depth
of field of an accommodated eye.

A second motivation is provided by a desire to study stability of image
representations. The mathematical analysis of an image representation must include
a study of the continuity and stability of the transformation. Reconstruction methods
are particularly useful for studying the stability. While blurred versions of an origi-
nal signal form a classical unstable representation, many intermediate-level transfor-

mations of image data nonetheless involve some degree of filtering by blurring. For
example, representations involving zero-crossings of Gaussian-filtered Laplacians of e
images [2], as well as many other pyramid schemes [3,4,5,6], involve Gaussian .
blur. Instabilities in the representation may not be important if approximate or
pseudoinverse reconstruction methods (see, e.g., [7]) can be found that make expli-
cit the assumptions concerning the input data. In this paper, we present an
approximate-inverse method involving polynomial approximations. %

2. The Heat Equation ..

2.1. Diffusion

There is a fundamental connection between Gaussian blurring and the heat
equation. Consider a rod of infinite length onto which an impulse of heat is placed.
As time evolves, the heat will diffuse and the original impulse will spread out. By
elementary physics, the resulting distribution will approximate a Gaussian whose
width depends on the elapse time ( see, e.g., the Feynman lectures, [8]). By super-
position, the model for the temperature distribution along the rod at an) given time
is the initial temperature distribution convolved with a Gaussian. The diffusion pro-
cess effectively convolves the initial distribution by a Gaussian whose spread .-
depends on how much time has evolved. This is the physically realized solution to :.- .
the heat equation, which can be formulated as follows ( [9]). Given f(x) piecewise
continuous and bounded, find h(x,t) bounded and C2 for t>O satisfying

-(x,t) = Ah(x,t), xeIR", t>O;

at
h(x.t)-f(xo) as (x,t)-(xOO), x0EIRn, t>O.

We denote the operator that takes f to h(.,t) by fl, i.e., h(x,t) = ( tf)( t. The
solution is given by

(flf)(x) = f K(y-x,t)f(y)dy,

where K is as defined before. When restricted to a Hilbert space such a,
.IR') , &lbecomes a svmmctric hounded linear operator. We will generall\ into:-

pret f(.) as an image.

The space of functions that can be blurred in this wka% is very large ln,'c,.
the condition that f t ) is bounded can he weakened. The solution is still icv - 2
convolution against the "source kernel" K(x,t), [101, h(.,t) = K( ,t)*.f "The s,,,;r,L

kernel is the fundamenial solution to the heat equ at on on the unbou !c (," ..

IR" WeV; a lo note that the blurring operator satishte, a semligroup propcrt .

it a lunction f v) has been blurred for some tinle 1t b 11, and The rV :1!..
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Humnmel, Kimls, and Zucker

function is blurred by l1 2, the end result is the same as blurring f(x) for a time
tl +t2. That is, flrfl = fl,+,. The two Gaussian blurring operators, each of which
may have its own physical justification, results in one composite Gaussian operator.
Indeed, by the central limit theorem, other blurring operators will also compose into
approximate Gaussians when iterated.

2.2. Deblurring
Deblurring is the inverse problem to blurring, and can be modeled as a diffu-

sion process running backwards in time. Formally, the problem of reconstructing
f(x) given a blurred function h(x) and a blurring amount t>O is the inverse heat I
equation problem, and poses technical difficulties not present in the forward heat
equation problem.

First, finding an inverse to fl, presupposes that l1t is one-to-one. In fact, the
blurring operator is one-to-one providing minor restrictions are placed on the
domain of 1,. However, without certain growth restrictions, it is possible to find
distinct functions f and f satisfying if = fltf, (see [11]). Second, a solution f to the
problem itff = h, given h, exists only if h is sufficiently smooth. In general, an
inverse can not be found, and even if h is sufficiently smooth, an arbitrarily small
change can destroy the smoothness. John [12] discusses the technical conditions
needed for the existence of an inverse. Finally, in a general function space the
deblurring problem is horribly ill-conditioned. This means that there can exist pairs
of functions f and f that are arbitrarily far apart whose images under fl, are arbi-
trarily close. The prototypic example is f(x) = Asin(wx) and f(x)= 0 in one space
dimension. Then (flf)(x) = Ae- 'sin(tx), which for w large can be very close to
f .= O.

Deblurring can be understood somewhat better in terms of the Fourier
transform. If we denote the Fourier transform of a function g(x) by g(w), then the
blurring operator fl, is a multiplier operator given by

( 1 f)t(w) = e-,tf(w).

By means of this formula, fk, can be extended to operate on the class of temperate
distributions S' of Fourier transformable distributions [13]. In particular, flt. is

defined for any polynomial f. Further, the formula shows that l1, is one-to-one on
any class of Fourier transformable functions. Moreover, our earlier observation
that deblurring can not generally be represented by a convolution kernel can be
observed from the formula, since although

f~~w)~ =eh(w),

a general convolution formula is not possible since e is not the Fourier translor-.
of- any tempered distribution

These difficulties would tend to in a ke one pessimistic about accomp i,!, ."
image deblurring, and in particular about discovering deblurring kernels. H o'k C\ c' .

deblurring is a common operatlon, and 1, t% pically accomplished bN giin t' llr '

lem a variational formulation, wOhich can lead to a% well conditioned problem \Vc

describe several variational trn iulanion in the next section, and prcent dehlurrin':
kernels for polynolial domam\,in t iil epientl sec IIo

'age 3
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3. Variational Formulation
We choose a normed space A and a closed convex subset A4 C At so that fi,

may be regarded as an operator fi : .4 - X, for all ttO; (note that tf0 is simply the
identity operator.) We may then pose the deblurring problem in the following
form:

Given hE(., t>O, find fEM minimizing IIff - hII.

If fl, is one-to-one and onto over M, then the solution f given h is precisely the
inverse image of h under fit, so that the minimization gives a zero norm. In gen-
eral, however, M is restricted in such a way that il maps into Al, and so the solu-
tion f is a pseudoinverse of h.

Difficulties arise because the operator fi, on the domain )M is in general ill-
conditioned. There are various approaches that one can take to find a good
deblurred signal f stably from a given h. A standard approach is to restrict M to a
sufficiently small set. We mention five possibilities, and our subsequent treatment
will use one of these approaches (the second one) as a point of departure.

(1) M1 = L 2 , and ,M = {fE M I f(d) = 0 for I w I>p}, for some fixed constant p.
Restricting to the space of band-limited signals (with a specified cut-off) allows
stable deblurring of a blurred signal h by means of the formula:~ >.

flw) 0 eIhw Iwi>P.

The function f can also be written as a convolution against h: f = KP*h, where
the Fourier transform of Kg is e' : '4 for Jw 15p, and zero elsewhere. This is a
standard method for deblurring, although it is well known that K "rings" over
a large spatial extent.

In a discrete setting, a similar (discrete) convolution deblurring kernel can be
formulated, yielding appropriate band-limited discrete approximations to origi-
nal signals. It turns out that this method is completely equivalent to computing
a pseudoinverse of the matrix representing the blurring operator by means of a
singular value decomposition.

(2) Xi = L(e-'2dx), and .M = Polynomials of degree N or less (fixed N), which
we will denote by PN. We will see (in the next section) that fl, is closed on P,%.
Thus the pseudoinverse problem can be solved as follows First, h is projected
onto PN by the linear orthogonal projection operator of A into P'. The result-
ing polynomial is deblurred by the convolution kernel Dv. to be defined in Sec-
tion 4 to yield the solution polynomial f.

The problem with this possibilit. is that images are typically far more genera!
than polynomials of degree N Thus to gct cvcn modcratek reasonable deblur-
ring. N has to be very large, and then applying D,.,. becomes difficult and
numericall, unstable. Although \%e will make use of the deblurring kernels 0,,
designed to deblur polynomials. our wiplementations (section 5) are more gcn-
eral than finding the pseudoinverse f among the class P,.

A 1. IR ). and M = (f( A' f } Thi' situation. ,tidcd oh n 11o" I .. lc.-
to partl\-stablc deblurring, as long as the given function h; i, suflicie ntl%

I'aze 4
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Hummel, Klmla, and Zucker

"blurry." Specifically, suppose T>t, and h - &Irg, some g (AM. Then the prob-
lem is to find fE.M such that IIJ - h. John studies bounds on the deblurring
error, where deblurring is accomplished by exactly the same linear process to
be discussed in in the next section. That is, he constructs an approximation f to
f by convolving h with a scaled version of the kernel DN given in Section 4. The
result is that the error in reconstructing f, IF - f]j, can be controlled to depend
-'ntinuously on the error in representing h. That is, small errors in represent-

ing h can lead to errors in representing f, but the maximum size of the errors
can be bounded. Interestingly, unlike customary notions of stability, the
dependence is not linear.1

(4) M = L2 (IR), and M = (I OfsM}, for some fixed M. With M = , this is
nearly the same as case (2). Now, however, we consider the possibility of non-
linear deblurring methods. Peleg [14] has implemented a deblurring scheme
base on a conjugate gradient iterative minimization of 11l1,f - hfl, constrained
by fEM. The constraints are handled, in Peleg's case, by remapping the inter-

val [0,.M I to [-too, and then solving an unconstrained minimization prob-
lem. By limiting the number of iterations, they obtain only an approximate
solution, although the results look very good. They don't study the stability
question, but one would expect the same kind of nonlinear stability for partial
deblurring as discovered by John.

(5) M = L2 (IR), )A = {JEL 2 I Ii M}, some fixed M. This case is treated by
Carasso et. al. [15]. They give a relatively simple nonlinear deblurring
method, making use of Fourier transforms, to solve the variational problem.
The method is not iterative. They also study the stability, and obtain the same
kind of stability estimates (for partial deblurring) as John.

An alternative approach to obtaining stable deblurring is to begin by specifying
the algorithmic form of the deblurring method, and to optimize with respect to a
statistical norm. For example, we can insist on a convolution kernel for deblurring,
and seek a kernel k minimizing

E{1Jk*f(J - i1,
where E{-} is an expectation operator which presupposes some distribution of
unblurred functions f. Other operators, such as worst-case norm, are also possible.
Such methods are studied in the province of information-based complexity[16].

If the distribution of f's is concentrated on, or limited to, polynomials in P,,
then all the functions flf will also be polynomials, and we expect that the optimal
deblurring kernel k will be the one that deblurs polynomials in PI, (namely, D.,
given in the Theorem of Section 4). If the distribution consists of functions that are
well-approximated locally by polynomials in P%., the optimal kernel won't change
much.

In the next section, we present the kernel DNv such that DN*flrf = f for all
fEP,v, (with t = 1/4). Since fl, is closed on Ps, this kernel may be used to deblur

Suppose that A is the representation of h, and that f is the approximate reconstruction of f using h Usual
notions of stability would require J'-f sC I h-h . using appropriate (and perhaps different) norms The non-
linear stability that is used in this case, hovkever, asserts that 1.f-f - C h-h ', for some integer k -1 Thur
in order to achieve an accurac'v of t in the reconstruction of f. it is necessar, to represent h to an accuraq, of
(I r )a . This might be viewed as polynomial stabhihr

Page S
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DEBLURRING GAUSSIAN BLUR

all polynomials h EPV. However, motivated by John's studies (case (2) above) and
the comments on optimal kernels, we will apply DN to functions h that are not in
fact polynomials.

The results may be analyzed in terms of local approximations by polynomials.
Suppose that the initial unblurred data f is written

f = p + a,

where p EPv and e is an error term. Specifically, p should be the projection of f
onto PN in the space L2(e-,2dx), so that p is a good polynomial approximation to f ,
near the origin, but may differ from f significantly away from the origin. Applying
the deblurring kernel DN to the blurred version of f yields the approximate deblur-
ring

f = p + DN*fl:,.

Thus

f - f = e - DN*fle,

whose norm (in L 2 (e-'2dx)) can be bounded by C.11ell. Since the norfin measures
errors only locally, the result is that we have stable, accurate deblurring for signals
that are well-approximated locally by polynomial data.

4. Polynomial Domains

The monomials {1,x, ''- ,xN } form a basis for PN. If this basis is orthonor-
malized with respect to the inner product

(f,g) = f(x)g(x)e -dx,

then the basis of Hermite polynomials {HO,H1,....HN} result. The Hermites can be
represented explicitly:

tn/2H (2x)" 2 m
H(x) = n! (-I)"

m=0 m!(n-2m)! '

or by the Rodrigues formula:

dn
H,,(x) = (-l)"e' : dr" (eX)

Without loss of generality, we will specialize to the case t= 1/4. and denote
111/4 by T. We now prove the aforementioned

Observation 1: T is closed on PN.

Proof: We will show that TH, ( P, for n!-N. 

VN--( TH,,)(y) = f - H,,)d v

Pagej
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Hummel, Kimls, and Zucker

2y e *e-Y .e2xy( d - 1 (eX d
=f_ -7~1)ndxn-1 (e-2)dx

ff V'2y(TH,- 1 )(y);

Solving this recursion relation, using THo = 1, we have

(TH,,)(x) = 2"x". K

As a result of Observation 1, T is an isomorphism of Pv. The inverse of T on
PNv is clearly given by "a

N N a'

T - 1 7(aix') =
i=O i=O 2'

.4

Our main result is that T- 1 restricted to PN can be represented by a convolu-
tion with an explicit kernel DN(x):

Theorem: For fEPN and g = 7f, then

f = DN * -

where - "

DN(X) = e- - H2k(x)k=0 V' T- k!2'

We will give a proof below using direct integration (as opposed to using Fourier
transform distributions). Note, however, that DN(x) is not the unique function
representing T - 1 on PN. In general, the kernel can be translated by any function
which yields a zero convolution against PN. This includes all functions of the form

e- 'H,(x), n>N. .

The stated kernel is unique among the class of functions of the form e-XZP(x),
where P(x) is a polynomial of degree N.

It is interesting to compare the form of DN(x) with standard enhancement
filters. For example, for N = 3,

= 2 e1 _ I d2  I _
D 3 (x) = e-X(l-x 2 )2= -e- 2 2 

(-e

Thus

* g = 1 2 dr

which is a not uncommon high emphasi. iltcr (s.ee, c g the papers by E. Mach
in [17] and [18]. In Figure 1, %e displa. plots of D. .for several values of,V.
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2

1.5-

D 5
0.5-

0-

-0.5 -

-4 -2 0 2 4

Figure Id

Figure 1. The deblurring kernels Der, for N = 5,9, and 13 for Figures la, lb, and
Ic respectively. Figures la, 1b, and Ic are drawn on the same vertical scales. Fig-
ure ld shows the deblurring kernel D5 (the same as figure la) with a different verti-
cal scale to emphasize the structure. The corresponding blurring kernel is
(1/VN-- )e ', so that one standard deviation cr is equal to x- V2"/2.

The proof of the theorem depends on several lemmas.

Lemma 1:

A0, n odd,

-7 , n even.
/. 2)1

Lemma 2: {,.
2 01 p O <k,

C2k,2p f' e- H 1k(V)-r Pd =

Proofs: Lemma I and I.emma 2 may be found in [191, Section 4 16, i-Aample I
Lemma 3:

For n -k,

.0. k,
el D., -- x ~ i ,c

Proof: [or k odd, and using the definitio of i 5k, c , VI) ..

an odd integrable function, and so integrates to /ero to, ,

I'age 9



DEBLURRING GAUSSIAN BLUR

[-1)2J
f Dv(x)xtdx = f e IH2i(x)x2Pdx
- -0 1-0 V-r'i!2

LI2J _ -1)' ()!i7O i Ci2i.21, = !1 2 2i(p i)

I ( ( 1 )'( 1 / 2 )-- M2. .. (1/2)p = (_)P( 2P) -  *
2Pp! ii(p-i)! 2Pp! 22P

Proof of the Theorem: From the formula for TH,, computed in Observation 1, it
suffices to show that DN * (2'x") = H.(x),n a N. We have

(Dv * 2"x")(y) = f-2"DA,(x)(y-x)"dx = _ 2"DNv(x) 7, (-I)Y x

R 2"n! R (- 1 n  (2m)!
= (~1)*Yn-kdk n f!m~(m!n2) 1)'" (2) nk=o •k) (2m)!(n -2m)! 22-,m!

n 0 ±- 1.. 2 n-2my n-2m H(y)U
Mom!(n-2m)!

The theorem could have been proved using the convolution theorem and by
computing the Fourier transform of Dy(x). Although we have not taken this
approach, we will nonetheless compute DN in order to show that the multiplier for
DN approaches, pointwise, the inverse of the multiplier for the operator T, i.e.,

Observation 2:

D,%(w) - e 4 pointwise as N-- o.

Proof:
LN/2J (-- .k_

DN(w) = Y -2 I(k
k=O Vi2k

where .7 stands for the Fourier transform operator. Now,

r [e-,H 2 k(x)](w) I t( - 2k 1) _i(e -":)(w) = (iw): T/ .e
dr 2

Thus
IN%' 21 - lh

_ ' 2

Hence

% %

Inn [b ~I 4g I0



Hummel, Klmla, and Zucker

It is interesting to observe that the kernel DV is a multiplier where Fourier
Transform is the Taylor series approximation to the function e' , multiplied by-2/4
the window e

Also as a consequence of observation 2, we see that DV(x) does not converge
pointwise to any function as N -o, since otherwise the Fourier transform of that
function would be ew  , which is impossible. DV(x) does converge in L2(e- 2 dx),
but that does not imply pointwise convergence to any function. We accordingly
have stable deblurring when using the kernels DN(x), where stability is measured in
terms of deviation from a polynomial of degree N, and the L2(e- 2 dx) norm is used
as the metric.

5. Higher Dimensions

The Gaussian blur operator is given by
TfAX) = fiR "7r- n/2 e- (X -y)2 f(y)dy.

Due to the separability of the kernel and Fubini's theorem, T can be decomposed
into n iterated blurrings:

T= TioT 2 o ".. *T

(Tif)(X) - (x,-yg) 2 f(xi, x.)dyi

Consider a polynomial in IR":

f(x) = , ax
cx !SN

"L = (a ,,2, " n, ), ,qzEz, ct,_O, , = I "t, x - . x

For fixed n, the function of one real variable

g(Yi) = f(x, Yi, ,x)

is a polynomial of degree no greater than N, so

DN * (Tg) = g

where T is the standard one dimensional blurring operator (2.1). Combining we
find that

( x) = L uv(y )D,'2) . .. DS(y,,)( Tf)(x- N )d-

for any multivariate polynomial f(x). Thus deblurring of blurred polynomial, of
degree N can be accomplished by convolution against the kernel

D,(.r) = DA,.(t)D.. 2 ) .. D.',i). ).

Thus the situation in higher dimensions i sirlilar to the one di renional case
The deblurring convolution kernel is separable, and will be of the form c ' "P ,
where P(x) is a polynomial of degree nV in t ( IR". tioure 2 sho,,.s a plot of D.* for
n = 2. N = 3. U sing a separable kernel tor dc blurrTig hai" c,. pL,:,;. in-
tages, but can lead to artifacts in diaeonail dtirc,tions % Oen appicJ, to cert W. iia'We"

Page I I
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DEBLURRING GAUSSIAN BLUR

We will see these effects in the next section.

6. Experiments in Deblurring
We experimented with the deblurring kernels Djv using both modest and large

amounts of blur. An original image (Figure 2a) has eight bits of grayscale informa-
tion digitized on a 480 by 512 grid. The image is regarded as a piecewise constant
function of two continuous real variables, and blurred by convolution against the
Gaussian (l/wr)e - 2- Y2 , where for Figure 2b the interpixel spacing is taken to be
h = .15 (corresponding to a standard deviation a = 4.7 pixels). Images (2c), (2d),
and (2e) show the results of applying the deblurring kernels D5 , Dg, and D 13
respectively. The diagonal artifacts arise due to the use of separable kernels, and
become more pronounced for higher N. The computations were done with 12-bit
fixed point arithmetic on a VICOM image processing computer. The results by
using floating point arithmetic on a general purpose computer (a VAX) were essen-
tially identical, although the effects of the diagonal artifacts is very slightly reduced.

For comparison, we display in Figure 3 the results of convolving the blurred
image in Figure 2b by a kernel Kp whose Fourier transform is a truncated version
of e ' . The kernel size was arbitrarily limited to 100 by 100 pixels, and p was
chosen small enough so that the kernel elements were considerably smaller on the
periphery of the kernel. If p were chosen too large, the magnitude of the kernel
elements decay extremely slowly. Clearly, deblurring by the kernel DN is far supe-
rior, due to the elimination of the sharp cut-off in its spectral properties. The diffi-
culty with a sharp cut-off is that it leads to "ringing" of the spatial kernel, and evi-
dence of ringing can be seen in the example of deblurring.

In Figure 4, we show the blurred image using an interpixel distance of h = 0.1
(corresponding to a standard deviation a = 7.1 pixels). The blurring kernel, to
beyond three standard deviations, is a roughly 50 by 50 mask. Figure 4b shows this
image deblurred using the kernel D 11.

The experimental results show that deblurring certainly improves blurred
images, even with the given inherent lack of stability. Better results may be obtain-
able with nonlinear or stochastic techniques, although our experiments certainly
demonstrate the human visual system's sensitivity to visual quality of deblurrings.
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